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Hill’s equations describe the relative motion of a chaser with respect to the target spacecraft in a circular orbit.
They possess periodic solutions that form the relative orbits of the chaser. In this paper it is shown that Hill’s
equations with three independent control accelerations are null controllable with vanishing energy. Based on this
property, the relative orbit transfer problem is formulated as a linear quadratic regulator problem and a feedback
control with arbitrary small L? norm is obtained via the Riccati equation. The design method is then extended to
Tschauner-Hempel equations that describe the relative motion of the chaser along an eccentric orbit. It is shown that
the controlled Tschauner—Hempel equations are also null controllable with vanishing energy and a feedback control
with arbitrary small L? norm is designed using the periodic solution of the Riccati differential equation. Numerical
simulations of Hill’s equations as well as Tschauner—-Hempel equations are given and feedback controls with good

performance are obtained.

Nomenclature

= state matrix

semiminor axis of relative elliptic orbit

control matrix

= y coordinate of center of ellipse

eccentricity of ellipse

universal gravitational constant

¢ height of circular orbit

height at perigee and apogee of eccentric orbit
quadratic cost

minimum cost

parameter of relative orbit along eccentric orbit
orbit rate

= matrix of minimum cost in parameter space
penalty matrix on state

penalty matrix on control

distance between target spacecraft and Earth
state transition matrix

period of orbit

s settling time

input vector

solution of algebraic Riccati equation

= state vector

rotating coordinate frame fixed in target spacecraft
total velocity change of two-impulse maneuver
parameter of stopping rule

true anomaly

gravitational parameter of Earth

parameters of initial condition of tracking error
time parameter of initial condition
fundamental matrix

= derivative of - with respect to time
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I. Introduction

ONSIDER a spacecraft in a circular orbit and another in its

vicinity, which are referred to as the target and the chaser,
respectively. The relative motion of the chaser with respect to the
target is described by autonomous nonlinear differential equations.
The linearized equations are known as Hill’s equations or Clohessy—
Wiltshire equations [1-4]. They are used in many research works
concerning rendezvous [5-8] and formation flight [9-17]. Hill’s
equations possess periodic solutions and the trajectories of the in-
plane motion form ellipses. These solutions constitute relative orbits
of the chaser and are useful for passive rendezvous and formation
flight because no energy is required for the chaser to stay in a relative
orbit. Such orbits could be used as temporary orbits before mission.
Relative orbits of a small size would be convenient for proximity
operations such as inspection and repair. For long-term space
missions a series of operations are generally planned, and relative
orbit transfers are needed when the operation of a spacecraft changes.
Therefore it is useful to consider the relative orbit transfer problem
and to develop a good control strategy for the transfer.

When the target is in an eccentric orbit, the relative motion of the
chaser is described by nonlinear differential equations with periodic
coefficients. The linearized equations are known as the Tschauner—
Hempel equations [7,18]. The state transition matrix associated with
them is given in various forms [7,19]. The Tschauner—Hempel
equations also possess periodic solutions that constitute relative
orbits and are used for the study of rendezvous and formation flight
[18.20].

For rendezvous problems, fixed-time and fixed-end conditions are
often assumed and impulsive maneuvers are employed [5,6,18]. For
formation flying, impulsive maneuvers are also used [14], but
various approaches such as linear quadratic regulator (LQR) [11-
13], adaptive control [15], and nonlinear control [16] are employed.

In this paper the relative orbit transfer problems associated with
Hill’s equations and the Tschauner—-Hempel equations are con-
sidered and a design method of feedback controllers that require less
energy is proposed. For this purpose three independent continuous
control accelerations (or thrusts) are introduced to both Hill’s
equations and Tschauner—Hempel equations. These equations are
then expressed in the state space form [21,22] and will be referred to
as Hill’s equation and the Tschauner—-Hempel equation, respectively.
It is shown that they are null controllable with vanishing energy
(NCVE) [23]. With this property, any state of the system can be
steered to the origin with arbitrarily small amount of control energy
in the L? (square integral) sense. The precise definition is given in the
Appendix. This property guarantees that the L2 norm of the feedback
control obtained by the linear quadratic regulator theory can be made
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arbitrarily small by choosing the penalty matrix on the state small.
This property is exploited in the control design.

The relative orbit transfer problem is to find feedback controls,
which steer the chaser in a given initial orbit to a given final orbit.
Thus our problem is an infinite horizon problem with free end
conditions. To find feedback controls, a “virtual spacecraft” is
introduced in the final orbit and the error system is derived. To
exploit the NCVE property, the relative orbit transfer problem is
formulated as a linear quadratic regulator problem and an optimal
feedback control based on the Riccati equation is obtained. The
feedback control steers the chaser to the final orbit asymptotically.
The optimal quadratic cost for Hill’s equation is parametrized by the
difference of initial conditions of the chaser and the virtual
spacecraft. Thus it is further minimized with respect to the initial
conditions, which yields the best position (initial condition) of the
chaser and the best initial position of the virtual spacecraft. They are
found analytically when the initial and final orbits are concentric
ellipses or when they intersect. For the Tschauner—Hempel equation
the feedback controller is constructed from the Riccati differential
equation with periodic coefficients. The optimal quadratic cost in this
case is parametrized by the initial condition of the true anomaly and is
again minimized with respect to it.

Because both Hill’s equation and the Tschauner—Hempel equation
are NCVE, the control energy for the transfer evaluated in the L?
sense can be made arbitrarily small. This is realized by choosing the
weight parameters in the quadratic cost small. For rendezvous and
formation flying, impulsive maneuvers are usually employed and
their performance is evaluated by the total change of velocity
denoted by AV [3]. For our feedback controls the control energy in
the L' (absolute integral) sense corresponds to the total velocity
change of impulsive maneuvers. Hence the L' norm of the feedback
control is compared with AV.

For numerical simulations a circular orbit and an eccentric orbit of
geostationary transfer orbit (GTO) type are considered. Linear
feedback controls are designed in each case and applied to the
original nonlinear equations of the chaser. Several performance
indices are calculated. Simulation results indicate that feedback
controllers with good performance can be designed. By employing
multistage transfer, maximum values of feedback controls are
significantly reduced.

The paper is organized as follows. Section II reviews Hill’s
equations and Tschauner—Hempel equations and shows their NCVE
property. Section III formulates the relative orbit transfer problems
along circular and eccentric orbits. The first half of the section is
concerned with Hill’s equation, and the transfer problem between
two elliptic relative orbits, which are concentric or which intersect, is
considered. As an example the circular orbit with height 500 km is
considered. Feedback controllers with small L' norm are designed
and simulation results are given. The second half of the section is
concerned with an eccentric orbit of GTO type and the relative orbit
transfer problem for the Tschauner—Hempel equation is considered.
Feedback controllers with small L' norm are obtained and simulation
results are presented. Section IV is the conclusion. In the Appendix
the definitions of NCVE and CVE (controllability with vanishing
energy) are given and their necessary and sufficient conditions are
collected.

4—3cosnt 0 (1/n) sin nt
6(sinnt—nt) 1 (2/n)(cosnt—1)
At 3n sin nt 0 cos nt
el = .
6n(cosnt—1) 0 —2sinnt
0 0 0
0 0 0

II. Equations of Relative Motion

Hill’s equations describe the relative motion of the chaser with
respect to the target. In this section the state space form of Hill’s
equations and its solution are briefly reviewed and the NCVE and
CVE properties of the controlled Hill’s equation are proved.

A. Hill’s Equation

Consider the target spacecraft in a circular orbit of radius R, as
shown in Fig. 1. The orbit rate in this case is given by
n = (u,/R3)"?, where 1, = GM, is the gravitational parameter of
the Earth, G the universal gravitational constant, and M, the mass of
the Earth. To introduce Hill’s equations, the right-handed coordinate
system (x, y, z) fixed at the center of mass of the target is used, where
x axis is along the radial direction, y axis along the flight direction of
the target, and z axis is out of the orbit plane.

The Newton’s equation of motion gives three equations

He (RO + X)

¥=2ny + n*(Ry + x) — (D
’ [(Ry +x)? + % + 22F
. . ey
¥ = —2nx + n’y — 5 2)
[(Ro +x)* +y* + 2°F
. HeZ
== 3 (3)
(R +x)* +y* + 2°F
The linearized equations around the origin are given by
¥ =2ny + 3n’x “)
y=—-2nx ®)
i=—-n%z (6)

which are known as Hill’s equations or Clohessy—Wiltshire
equations [1-4]. Note that Eq. (6) is independent of (4) and (5). Now
introduce control accelerations u,, u,, and u, to Egs. (4-0),
respectively. Then the state space equation for the resulting equations
is

ro o0 1 0 0 07 0 0 07
0 0 O 1 0 0 0 00
. 32 0 0 2n 0 O 1 00
xX= x+ u
0 0 —2n 0 0 010
0 0 O 0o o0 1 0 00
L0 0 O 0 —-n?2 0] L0 1|
= Ax + Bx @)
where
x =[x y X ¥y z z']’, uz[ux u, uz]’

and ()" denotes the transpose. The system (7) will be referred to as the
(controlled) Hill’s equation. The transition matrix e is given by

(2/n)(1 — cos nt) 0 0
(4/n) sin nt — 3¢ 0 0
2sin nt 0 0
4cosnt—3 0 0 ®)
0 cosnt  sinnt
0 —sinnt cosnt
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chase vehicle

target vehicle

Fig. 1 Target in circular orbit.

This yields the solutions of the free motion

x(1) =4xy + (2/n)yy — [3x¢ + (2/n)yy] cos nt 4+ (1/n)x, sin nt

y(1) = yo = (2/n)%o + (2/n)%y cos nt + [6x, + (4/n)yo] sin nt
— (6nxg + 3yo)t

z2(t) = zgcos nt + (1/n)zy sinnt )

It is easily seen from (9) that the solutions are periodic if and only if
Vo= —2nx, (10)

In this case the same relation y(t) = —2nx(¢) holds for all ¢. This
follows from

{x(t) = xycos nt + (1/n)x, sin nt (11

y(t) =y — (2/n)xy + (2/n)xy cos nt — 2x, sin nt
These equations are equivalently written in the form

x(t) = asin(nt + «)
{y(t) =d 4 2acos(nt + )

where

d= Yo — (2/n)%,,

a= [+ GG/m?  (12)

cosa = (xy/na), sina = (xy/a)
Hence, the trajectory of the periodic solutions (11) is an ellipse with
center (0, d) and eccentricity e = (+/3/2)

¥ =d’
a1 ey 7! 4
Hill’s equation (7) is controllable and the eigenvalues of A are
{0,0, £ni, £ni} and lie on the imaginary axis. Therefore the
following result is a direct consequence of Theorems Al and A2.

Theorem 2.1. Hill’s equation (7) is CVE and hence NCVE.

The CVE property guarantees the state transfer of the system with
arbitrarily small amount of energy. The subsystem describing the in-
plane motion is

0o 0 1 0 0

. o 0 O 1 0 0 -

*=132 0 0 2 x 4+ 1 0 u,=Ax+ Bu (14)
0 0 —2n O 0 1

which is also referred to as Hill’s equation. Note that this is CVE
(NCVE). Based on this property, a control strategy for the relative
orbit transfer will be proposed in Sec. III.

B. Tschauner-Hempel Equation

Consider the target spacecraft in an eccentric orbit shown in Fig. 2.
Here 0 denotes the true anomaly and R, is the distance from the center
of the Earth to the target. The equations of motion of the target are
written as

Ro— Ro& = —(1./R}) (15)

2Ry0+ Ry =0 (16)

Let T be the period of the eccentric orbit. Then the solutions of (15)
and (16) are T periodic. The relative motion of the chaser with respect
to the target is described by

C Mo g 2RO e (R + )
i==5+0x— y+20y— 17)
R Ry [(Ry + ) + y* + 2°F
2R0 S
§=00 205 46y — Hey g
Ry [(Ry +x)* +y* + 2’
.. e
z=— (19)
[(Ry + 0 +y* + 2P
The linearization around the origin yields
: 2Ry :
P (6 + 2B )y 2507y 4 2hy 20
) 0
- 2Roé 2 He j .
=— ——|y—26 21
V=R + ( R y x 21
R He 22)

—z
3
RO

which are known as Tschauner—Hempel equations. If 6 = n, these
equations are reduced to (4—6). The state space form of the controlled
equations is

0 0 1 0 0 0 0
0 0 0O 1 0 O 00 0
2 . 2Re6
. 0 +2’;—8 % 0 20 0 0 100
X = .. . . X+ u
Wl Pt 20 0 0 0 010
0 0
0 0 0O 0 0 1 000
0 0 0 0 —-% 0 L0 0 1]
- 0 -
= A(t)x + Bu (23)

where A(?) is T periodic. This system is referred to as the (controlled)
Tschauner—Hempel equation. It is an easy exercise to show that
[A(?), B] is controllable. Below the CVE property of [A(?), B] will be
shown. Because the system (20) and (21) and the system (22) are
independent, it is enough to show that these two subsystems are
CVE. First consider the system describing the in-plane motion

0 0 1 0

00
0 0 0 1 0 0
x=| 2 . 2Re6 5 lx + u
0 +2£—3 - 0 20 10
2Rof 2 . :
. [% —;—3 =260 0 0 1
=A,(t)x + Bu (24)
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T

'Nrget vehicle
chase vehicle L
'

Fig. 2 Target in eccentric orbit.

Let 0 < 7y < T. The solution of (24) with # = 0 and x(¢y) = x, is
obtained from Yamanaka and Ankerson [19] as follows:

x2

937

b — (ki/p)P

ks + k3

+

T (/PR R

Hence, the parameter K determines the shape of the periodic
solution. If K and 6, are given, then x(#;) is determined uniquely by
(27). Now the CVE (NCVE) property of (23) is examined. Note that
ST + ty,t9) = S, (2, 0)S,(T, 0)S,(ty,0)~". Therefore §,(T+
ty, 1) and S,(7,0) are similar and have the same eigenvalues.
Below the set of eigenvalues of S;(7,0) are identified with
{1,1,1, 1}. Now

1 0 0 O
_ _ ¥* 1 0 =
S1(T.0) = Py Doy = (Poo) + AP0 = | . 1
0 0 0 1
where
0 0 0 0
0 0 0 3(1+ekT
AD = . .
0 0 0 G(T)ﬁ?sz
0 0 0 0
0 0 -1 —l%re
() lile _% )
= (1)
0 2 ME+e) 36T
(1+e)? (1+e)? I+e

x = OK 25)
where
x=[x y & y]. K=[k k@ ks k]
@4
B s c 1 T
1 c 1 s 1
o —%c gs %e(3cG+/‘)%)
of ;—2’[2%;—;(1—%)] g’[c(1+§)+e;—§] 32(1-esG)
p=1+ecosf, c=pcosh, s=psinfd
(i —1 )—/ngr—G(e) fo="He (26)
" Ja p@? B

6y = 0(ty) and h is the orbital angular momentum of the target
spacecraft. Because G(6,) = 0 by (26), it leads to

Dy,
0 _s _c _2
P P P
1 _s(1+1) 1(14—1) 0
P P P P P
o —Qc %s %

L
=

P
;—f[z—l—e%(l—%)} g[c(l-i-%) +e;é] 3¢
o

From0 < e < 1,itfollows thatdet @, # 0.Now K is determined by
K = @, 'x(1)) 27
and (25) is rewritten as
x (1) = Dy®; 'xg
Therefore
S1(t, t0) = Py D51
where S,(¢,1,) is the transition matrix corresponding to A;(¢).

Because G(6) is the only aperiodic component in g, x(r) and y()
become periodic if k, = 0. In this case

{x(t) =—k,sinf—k;cosf 28)

y(@)=(1/p)ky—(c/p)[1+(1/p)lkx+ (s/p)[1 +(1/ p)]ks

and its trajectory is written as

A direct computation shows that the last row of <I>g(})) is of the form
[* 0 0O =x] where * denotes some nonzero numbers. Thus
o[S;(T,0)] = {1, 1,1, 1}. This property is also discussed in [20]. It
follows from Theorem A4 that the system (23) is CVE.

The subsystem for the out-of-plane motion is given by

. 0 1 0
x=|_p ¢o|*+ lu,EAz(t)x—i—Bzu

3
RD

Using the solution
z(t) = (1/p)(k, cos 0 + k, sin 6)

the identity o[S, (7, 0)] = {1, 1} can be shown in a similar manner,
where S,(z, s) is the transition matrix associated with A,(r). Hence
the following result is proved.

Theorem 2.2. The Tschauner—Hempel equation (23) is CVE and
hence NCVE on any interval [y, 00),0 < 1, < T.

III. Relative Orbit Transfer

As discussed in Sec. II, Hill’s equation (7) and the Tschauner—
Hempel equation (23) have periodic solutions (11) and (28),
respectively. They are relative orbits of the chaser. If the periodic
solutions encircle the target spacecraft in the orbit plane, then passive
flyaround could be fulfilled by putting the chaser into these orbits.

In this section the relative orbit transfer problem from a given orbit
to another is considered. Because the in-plane motion and the out-of-
plane motion are independent, only the in-plane motion, which is
more involved, will be discussed. Feedback controllers based on the
linear quadratic regulator theory and the NCVE property are
proposed.

A. Relative Orbit Transfer Along a Circular Orbit

Recall that Hill’s equations (4) and (5) give elliptic relative orbits
(11) and (13) of the chaser. Let

(initial orbit)

X2 ()‘-al)z —
a TG = 1

ﬁ ()"*122)2 —
a7t 1

Gar T = (final orbit)
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40 : initial state of the chase vehicle
T : initial state of the virtual vehicle
@ :target vehicle

Fig. 3 Relative orbit transfer.

be the initial and final relative orbits of the chaser, respectively, given
in Fig. 3, where O is the origin which indicates the position of the
target in the (x, y) frame, the parameter a denotes the semiminor axis
of the relative orbit and the parameter d denotes the distance from the
target spacecraft to the center of the relative orbit. Note that the orbits
in Fig. 3 are not orbits in the inertial frame. Assume that the chaser in
the beginning is in free motion and in the initial orbit, which is the
larger elliptic orbit. Consider the problem of finding a feedback
control, which steers the chaser asymptotically to the final orbit,
which is the smaller elliptic orbit in Fig. 3. This problem could be
interpreted as the transfer from a temporary relative orbit to a relative
orbit for inspection. Let x;o =[xy Yy X Y| be the initial
condition of the chaser so that (x,,y,) satisfies (13) and the
conditions (10) and (12) hold for a = a, and d = d,. Recall Hill’s
equation (1)

X, =Ax, + Bu, x(0) =x
Ifu = 0, then the chaser stays in the initial relative orbit for all time. It
is convenient to introduce a virtual spacecraft in the final orbit given
by

Xy =Ax,, x5(0) = x5

where x, is the initial condition of the virtual spacecraft that satisfies
(10), (12), and (13) with @ =a, and d =d,. Thus the virtual
spacecraft stays in the final orbit for all time. To find a desired
feedback control, introduce the system for the error x = x; — x,

X =Ax + Bu, x(0) =x,
where x, = x ;o — X,. Now a feedback control is designed via the

linear quadratic regulator problem [21,22] that minimizes the cost
function

J(wixg) = A et Qx(6) + (o Ru(0)] dr

where Q >0, R >0 and (C,A) with C = /0 is assumed to be
observable. Because (A, B) is controllable, there exists a unique
positive definite stabilizing solution of the algebraic Riccati equation
(ARE)

A'X+XA—XBR'BX+0=0 (29)
The optimal control is given by the stabilizing feedback control
u*(t) = —R7'B'Xx(1) (30)
and the minimum cost by

J(xo) = J(u*, x) = x\,Xx, @31

Because the feedback controller (30) is stabilizing, x(f) — O as
t — oo. Hence, the chaser approaches the final orbit asymptotically.
If a, =d, =0, then the final orbit collapses to the origin and it
corresponds to the rendezvous and docking (of the point mass
systems). Because the relative orbit transfer problem is at stake, the
time to introduce control inputs to the equation of motion of the
chaser is assumed free. This implies that the initial condition x,
could be any point satisfying (10), (12), and (13) with a = a, and
d = d,. The initial condition X, is also an arbitrary point satisfying
(10), (12), and (13) with a = a, and d = d,. Therefore it is useful to
minimize J (x) with respect to x| and x5, and to find the best initial
positions of the chaser and the virtual spacecraft. For this purpose
consider the special points

X0=[0 d +2a na O]

_ - (32)
X0=[0 dy+2a, na, 0]
Note that these points correspond to those on the major axes of initial
and final orbits, respectively, see Fig. 3. It is easy to parametrize the
initial conditions x;, and x,, as follows:
0= < @x/n)]

_ LJAT & Az
X9 =e""Xy Xy = €"72Xy

(33)
[0 < 7 < (27/n)]
Now J (xo) is given by
J= (e*M1x) — €47 X50) X (eAT13)g — eA72Xy) (34)

Thus the minimization of J with respect to x, is reduced to the
minimization with respect to t; and t,, which will be discussed
below.

1. Transfer Between Concentric Elliptic Orbits

Here the special case d = 31 — c?z = 0 is considered, where the
initial and final orbits are concentric ellipses. Substituting (8) and
(33) into (34), x,o and x,, are written as

_a;sinnt; _ aysinng,
o= dy + 2a, cosnt; ’ oo = dy + 2a, cosnt,
naj cos nt na, cos nt,
—2na; sinnt; —2na, sinnt,

so that

a,sinnt; — a, sinnt,
2(a, cos nt; — a, CoSnt,)
n(a; cosnt; — a, cos nt,)
—2n(a, sinnt, — a, sinnt,)

Xo=

To minimize (34) it is convenient to introduce

H R i | ) B
Then x, is expressed as
x)= [n 28 n& —Znn] (36)
Because X is positive definite, we write

Xll X12 X13 Xl4

Then J is given by
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j = x6Xx0 = (4X22 =+ 4nX23 —+ n2X33)$2 —+ 2(2X]2 =+ nX|3
—4nXyy — 2n*Xay)En + (Xiy — 4nXyy + 4n°Xy)n?

=Hnﬁﬁ}ﬂ) 37)

for any x, # 0, where P = (P;;) is a symmetric matrix with

Pll = 4X22 + 4nX23 + n2X33

P12 = 2X|2 + nX]3 — 4nX24 — 2n2X34

Py =X, — 4nX,s + 4n’Xy,
In view of (36) and (37) P is positive definite. Thus in the (£, n) plane,
J = const describes an ellipse with center at the origin. The region

where (£, n7) traverses can be found as follows. The definition (35)
gives

E+n=al+di—2aa,cosn(t) — 1) = r*(1;,1,)  (38)
and the inequalities
(a1 —a)* <7 (11, ) < (a) + ap)*

Thus (38) describes a family of circles and (&, n) lies between two
circles of radii |a;, — a,| and a; + a,; see Fig. 4. When 7, = 1,, the
radius takes the minimum value |a, — a,|. In this case

{Ez (a; — ay) cosnt,

39
n=(a, — a,) sinnrt, %)

and (&, ) covers the whole circle. Therefore, as shown in Fig. 4, J
takes the minimum value when the ellipse contacts the inner circle.

To find the minimizing 7, explicitly, let A? and A2 be the
eigenvalues of P, and u; and u, the corresponding normalized
eigenvectors. Introduce the transformation

-t ]

to obtain a simple expression
n - .
J=ME + 137

The ellipse J = k> becomes

g P
+ =1 (40)
(k/7)?  (k/Ay)?
7
7 a; +az ¢
nry
13

— (a1 +az)

v

a; —az

Fig. 4 (&, ) region and J = const.

The minimum of J is attained at the points of contact of the ellipse
(40) and the circle (39) shown in Fig. 4. Let A2 <A} and set
uy =[u;; uy ] Thenin view of (35) the minimizing t, are given by

Lean— 1| 42
, tan (u”)
*
=
Lean—1| 42 ke n 2n
yran o 0 €

If A3 =23, (40) describes a circle and any 7,(0 <1, <) is a
minimizing point.

2. Transfer Between Arbitrary Elliptic Orbits

Here the general case d = d, —d, # 0 is considered. Then x; is
written as

a; sinnt; — a, sinnt,
_ | d+ 2(a,cosnt; — a, cosnt,)
0= n(a, cos nt, — a, cos nt,)
—2n(a, sinnt, — a, sinnt,)
so that (37) becomes
~ _ TP P %-_%7 ~
F=Tle_ _ 1 12][ _:| _i
[E £ 7 77]|:p|2 Pylln—7 0
where

—d[P5(2X5;, + nXp3) — P (Xpp — 2nX5,)]

£=

P, Py, — P3,
A= —d[—P,(2Xy + nXp3) + Pyp(Xip — 2nX5,)]
Py Py — P},

kg = —Xpd* + Pllgz + 2P|2$_ﬁ + Py,

J=k- 120 describes an ellipse with center (S_, 1) (see Fig. 5). J
takes the minimum value if and only if & is minimum. To find the
minimum three cases below should be examined:

DE +7 < (a —ay)’.

2) () —ay)* < é,.fz + 77 < (a; + ay)?,

3) (a) + a)* <& + 7.

In cases 1 or 3, optimal pairs (], 75) exist but they are not
analytically found. Therefore case 2 will be studied below. In this
case (£,n) = (S_, n) gives the minimum J= —120(122 0). The
equality

£24+ 7? = a} + a} — 2a,a, cos[n(t} — ©3)]

x (&)

— (a1 + a2)

Fig. 5 (&, 1) region and J = [ IAcO.
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implies

(@} +ad)— (E + ﬁz)]

1
o — | ==cos™!
o = ] = ooy | (A=

Define é as

B ot [ @ T @)~ E +i7)
2a1a2

} O0O<b<m &)

If ¢f > ¢, then 7} — 73 = (6/n) and

&=a,cosntf —aycosnt; =a,cos(nty + 0) —a,cosnt;

= (a, cos @ — a,) cosnt; — a, sinfsinnt;

= (& + iP)tcos(nt} + 6;) 42)
where
005012%9_2?2, Sin@lzzan_f]
& + %) & +n):

and for the fourth equality, (41) is used. Similarly, 7 is written as
=& + i) sin(nts + ) (43)

Hence in view of (42) and (43)

rj‘:%[tan*(g) —9,] —|—§ (OSTT<2,7”)
(0§t§‘<2n—”)

On the other hand, if ©5 > 7}, then © — 7} = (é/n) and

E=(E +)icos(nty —0,), 7= + i) sin(nt} —6,)

where

a; —a,cos

€ + )}

. a,sin 6
, sinf, =

S E+ P
Hence in this case

=1 |:tan‘1 (g) + 02] (O <1< zn—”)
1%} :%[tan’l(g) + 92] +0 (0 <5 <2n—”)

In the developments above, the weight matrices Q and R are fixed
and the following problem is considered: min,, min, J(u; x,). Butin
applications it is desirable to keep the L? norm of the feedback
control (30) small. For this purpose one could take Q = gl for
example and let g — 0. Then the solution X, of (29) approaches the
solution of (A2), which is zero. Hence the orbit transfer can be
realized by the feedback with arbitrarily small > norm. However,
the settling time becomes larger. For rendezvous and formation
flying, impulse maneuvers are often employed and their performance
is evaluated by the total velocity change required for the maneuver.
For continuous controls the L' norm corresponds to this. As the L?
norm of the feedback decreases to zero, the L' norm in general
decreases and approaches to a positive constant. This will be
confirmed by the simulation results below. This phenomenon
concerning open loop controls is observed and analyzed for infinite
dimensional systems [24].

cos 6, =

Table 1 Constants and parameters of circular orbit

Constants Values

R, 6378.136 km

e 398,601 km?/s?
Common parameters Values

h 500 km

n 1.1068 x 1073 rad/s
T 5677 s

3. Simulation Results

For numerical simulations the circular orbit of the target spacecraft
of height 2 =500 km is considered. The period of this orbit is
T = 5677 s and the orbitrate n = 1.1068 x 1073 rad/s; see Table 1,
where the radius of the Earth R, and the gravitational constant of the
Earth p, are also given.

To see that (7) is NCVE, the initial condition x,=
[0 d42a na 0], with d=0, a=50 is taken. This
corresponds to the one of the points on the major axis of the
relative orbit with center at the origin and semiminor axis a = 50.
The norm ||| 2o 1, of the control

T,
i =—BeV 00l eMrx, Or, = / " AT BB A T 4y
0

which steers x to the origin at time 7, with minimum L? norm, is
plotted in Fig. 6. The norm decreases toward zero as time 7' tends to
infinity.

To consider the orbit transfer problem, two concentric elliptic
relative orbits of Hill’s equation are chosen. The center of the two
ellipses is at the origin (at the target vehicle) and the semiminor axes
of the initial and final orbits are 50 km and 5 km, respectively, see
Table 2, where CSS stands for “concentric” and “single stage.”

To design a feedback controller, Q in the ARE (29) is chosen small
relative to R so that the L2 norm of the feedback controller becomes
sufficiently small. For simplicity the matrices Q and R in (29) are
assumed diagonal, that is, Q = diag(g,) and R = diag(r;). From the
computational point of view, it is assumed that ¢; < 1 and r; > 1.
Then the L? norm of the feedback controller can be made arbitrarily
small. For the simulation these parameters are set ¢; = 1.0 x 107,
i=1,2, ¢=0, i=3, 4, and r; =1.0 x 10°. The feedback
controller (30) has been applied to the nonlinear Hill’s equations (1)
and (2) with control u, and u,. To introduce a stopping rule, let 7.,
denote the minimum distance of a point in the final orbit from its
center, and v,,;,, the minimum velocity of the chaser in the final orbit.
The chaser is regarded in the final orbit if |x|, |y| < 0.01r,,;, and |X],
|¥] < 0.01v,,;,. The controlled trajectory of the chaser is depicted in
Fig. 7 and the control inputs in Fig. 8. The settling time 7, = 37546 s
and the L2 norm of the control is 3.1446 x 10~! m/s3.

The relative orbit transfer could be done by the two-impulse
maneuver shown in Fig. 9 and the total velocity change AV;=
49.805 m/s. The L' norm for continuous controls corresponds to the

6
10

0 2 4 6
10 10 10 10
T [s]
Fig. 6 Terminal time and L? norm of ii.
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Table 2 Parameters and performance indices, CSS

Parameters Values
(ay,ay) (50, 5) km
(d,,d>) (0, 0) km
Performance indices Values

ety 32.590 m/s
floell> 3.1446 x 10! m/s?
AVy 49.805 m/s

T, 37,546 s

U 4.1752 x 1073 m/s?
umax 5.8159 x 1073 m/s?

total velocity change. The L' norm of the feedback controller is
32.590 m/s, which is smaller than AV.. Our calculations show that
the L? norm of the feedback control decreases toward zero as Q
becomes smaller relative to R, whereas the L' norm approaches to a
positive constant. The maximum values of the inputs u, and u, are
denoted, respectively, by u® and uy**. They are also important
performance indices because they are factors that determine the
specifications for the thruster. All these performance indices are
given in Table 2.

The relative orbit transfer discussed above is a single-stage
transfer from the initial to the final orbit, but a number of intermediate
orbits may be introduced between them. The multistage transfer is
then realized by the successive applications of a single-stage transfer.
In the simulation four intermediate orbits with a ranging from 40 to
10 are introduced. As for the stopping rule, a suitable positive
constant €, is chosen. At each stage the chaser is regarded in its final
orbit if |x|, |y| < €,7min and |X|, |¥| < €, V. One could vary e,

* chase vehicle
target vchlclc—‘
100 50 0 -50 -100 -150
y [km]

Fig. 7 Controlled trajectory of nonlinear Hill’s equations, CSS.

4)(10 —
M;
2
& \ N B
2 0 YN
=]
— 2
N
-4
-6
0 1 2 3 4
4 [S] x10‘

Fig. 8 Control inputs, CSS.

transfer orbit

l

impulse

Yl

target orbit

Fig. 9 Two-impulse transfer.

Table 3 Parameters and performance indices, CMS

Parameters Values

a (50, 40, 30, 20, 10, 5) km
d (0,0,0,0,0) km

€, (0.1,0.2,0.2,0.1, 0.01)
Performance indices Values

el 32.616 m/s

lloel2 1.9208 x 107! m/s?
AV, 49.805 m/s

T, 66,298 s

uax 1.6215 x 1073 m/s?
u 2.3474 x 1073 m/s?

because the chaser does not need to be strictly in each intermediate
orbit. The values of the parameter €, are given in Table 3, where CMS
stands for concentric and “multistage.” For example €, = 0.1 for the
first transfer, whereas €, = 0.01 for the last transfer. The trajectory of
the chaser satisfying the nonlinear Hill’s equations with control is
depicted in Fig. 10, the control inputs in Fig. 11 and the performance
indices are given in Table 3. The settling time 7, = 66, 298 s, and the
L? and L' norms of the control are 1.9208 x 10~ m/s? and
32.616 m/s, respectively. Compared with the single-stage case, the
settling time is longer but the L? norm becomes smaller. The L'
norm, on the other hand, remains almost constant. The maximum
values of acceleration become much smaller as expected and uy** =
1.6215 x 107 m/s? and u™™ = 2.3474 x 10~* m/s?.

The transfer problem between two nonconcentric elliptic relative
orbits given in Table 4 is also considered. The initial orbit is the
ellipse with center d; =25 km and semiminor axis a; = 10,
whereas the final orbit is the ellipse with center at the origin and
semiminor axis a; = 5. The performance indices of the feedback
controller are given in Table 4, where NSS stands for
“nonconcentric” and “single stage.” The L' norm of the control is
5.0564 m/s and is smaller than the total velocity change AV, =
13.835 m/s of the two-impulse transfer. The trajectory of the
nonlinear Hill’s equations with control is depicted in Fig. 12 and the
control inputs in Fig. 13.

A multistage transfer between the same relative orbits is also
considered. Parameters of the four intermediate orbits and the
performance indices of the controller are given in Table 5, where
NMS stands for “nonconcentric” and “multistage.” The maximum
values of acceleration uy™* and uy™ are 1.9329 x 10~* m/s? and
5.3847 x 10~* m/s?, respectively, and are much smaller than those
of the single-stage transfer. The controlled trajectory of the chaser is
depicted in Fig. 14 and the control inputs are given in Fig. 15.

50

x [km]
o

- e k|
100 50 0 -50 -100 -150
y [km]

Fig. 10 Controlled trajectory of nonlinear Hill’s equations, CMS.

e =i]
< o

4 6
1 [s] x10°

Fig. 11 Control inputs, CMS.
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Table 4 Parameters and performance indices, NSS

Parameters Values

(a1, a,) (10, 5) km
(dy.d,) (25, 0) km
Performance indices Values

el 5.0564 m/s
fluell 6.8137 x 1072 m/s?
AVy 13.835 m/s

T, 25,920 s

U 0.826,28 x 107> m/s?
umax 2.2899 x 1073 m/s?

B. Relative Orbit Transfer Along an Eccentric Orbit

Assume that the target spacecraft is in an eccentric orbit. Then the
relative orbits of the chaser are periodic solutions (8) of the
Tschauner—Hempel equation (3). Let the initial and the final orbits be
periodic solutions corresponding to the parameters K, and K,
respectively. To specify the position of the target spacecraft, it is
assumed that 6(0) = 0 so that the target spacecraft is at perigee when
t=0. Let 0 < 7y < T be the initial time when the control input is
introduced to the chaser. Then the initial conditions x, and x, of the
chaser and the target are determined uniquely by (7) as functions of
0(t,). The controlled motion of the chaser is given by

X, =A(t)x; + Bu, x1(t) = x19

and the motion of the virtual vehicle by
Xy =A()x,, x;(9) = X3

Letx = x; — x,, then
x=A,(t)x + Bu, x(ty) = xg

where x, = xo — X,. Now consider the linear quadratic regulator
problem defined by the cost function

J(u;x0) = /Dc[x(t)’Qx(t) + x(t)'Rx(1)] dt

where Q >0, R> 0 and (C,A) with C = /Q is assumed to be
observable. The controllability of (A, B) ensures the existence of a
positive stabilizing solution to the Riccati differential equation

—X=A@)'X+XA() —XBR'BX+Q (44)

15 s chase vehicle
10 target vehicle

x [km]

40 20 0 -20
y [km]

Fig. 12 Controlled trajectory of the nonlinear Hill’s equations, NSS.

x 10
25
uy
2 2
15
Yo
E N
— 05
=
o FON P
0.5
Kl
0 1 2 3

1 [s] x10"
Fig. 13 Control inputs, NSS.

Table 5 Parameters and performance indices, NMS

Parameters Values

a (10,9, 8,7, 6,5) km
d (25, 20, 15, 10, 5, 0) km
€, (0.1, 0.08, 0.05, 0.03, 0.01)
Performance indices Values

flaelly 47238 m/s

lloel2 3.0482 x 1072 m/s?
AV, 13.835 m/s

T, 61,579 s

uax 1.9329 x 107* m/s?
uy™ 5.3847 x 10~* m/s?

The optimal control is given by the feedback control
u*(f) = —R'BX()x(t) 45)
and the minimum cost by
J (@ xq) = XX (1) = x[0(10) X (16)x[6(1)] = J[6(10)]

Because the feedback controller (45) is stabilizing, x(f) — 0 as
t — oo and the chaser approaches the final orbit asymptotically. If
K, = 0, then the final orbit becomes the origin and it corresponds to
the rendezvous and docking (of the point mass systems). The
minimum cost (31) is parametrized by the initial condition x, but
j[@(to)] is a function of 6(¢,). Hence f[@(to)] can be minimized with
respect to 6(%,) to obtain the best initial true anomaly.

For numerical simulations the eccentric orbit of the target
spacecraft with height of perigee &, = 250 km, height of apogee
h, = 36226 km, and eccentricity e = 0.73074 is considered. In this
case the semimajor axis is ¢, = 24616 km and the period of the orbit
is T = 38436 s. These parameters are listed in Table 6. Such an orbit
is often called a GTO, which is a temporary orbit to inject a satellite
into the geostationary earth orbit (GEO). Note that (0) = 0 so that
the target spacecraft is at perigee when ¢t = 0. The eigenvalues of the
transition matrix S, (7, 0) are then calculated numerically and found
{1, 1,1, 1}, which confirms the NCVE(CVE) of the Tschauner—
Hempel equation [or (4,(?), B;)].

The parameters of the initial and final orbits K, and K, are given in
Table 7, where SS stands for “single stage.” The maximum diameter
of the initial orbit is about 50 km and that of the final orbit 10 km as
shown in Fig. 16. Feedback controllers are obtained by solving (44)

x [km]

40 20
y [km]

Fig. 14 Controlled trajectory of the nonlinear Hill’s equations, NMS.

6 —_—

u [m/s?]

| LN P

=)

f v\ /\/"‘

-2

0 4
t [s] x10"
Fig. 15 Control inputs, NMS.
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Table 6 Parameters of eccentric orbit

Target vehicle parameters Values
h, 250 km
h, 36,226 km
e 0.730,74
a, 24,616 km
T 38436's

Table 7 Parameters and performance indices, SS

943

Table 8 Parameters and performance indices, 3S

Parameters Values

K, [10 3 2 0]
K, [5 2 1 0]
K; [0 1 2 0]
K, [0 1 1 0]
Performance indices Values

el 2.7873 m/s
llll> 1.2718 x 1072 m/s?
T, 243795 s

uhax 1.4748 x 10™* m/s?
uyx 1.4756 x 1073 m/s?

Parameters Values

K, [10 3 2 0]
K, [0 1 1 0]
Performance indices Values

[l 2.5969 m/s
flatll, 1.7864 x 1072 m/s?
T, 100,341 s

U 7.2148 x 107+ m/s?
up 2.6515 x 1073 m/s?

numerically. To make the L? norm of the feedback control small, the
elements ¢;(i=1,...,4) of the diagonal matrix Q are taken
relatively small compared with those r;(i=1,2) of R. Here
q;=10x107°,i=1,2,¢;,=0,i=3,4,and r; = 1.0 x 10’. The
linear controller is implemented to the nonlinear equations (17) and
(18) with u, and u,, respectively. The following stopping rule is
introduced. The chaser is regarded in the final orbit if |u,|,
|u,| < 1.0 x 1076 m/s*. The controlled trajectory of the chaser is
depicted in Fig. 16 and the control inputs in Fig. 17. The L' norm is
2.5969 m/s and the settling time 7, = 100, 341 s. The maximum
values of the inputs u, and u, are 7.2148 x 10™* m/s*> and
2.6515 x 1073 m/s?, respectively; see Table 7. The simulation
results of the three-stage transfer are given in Table 8, Figs. 18 and
19, where 3S stands for “three stage.” The L' norm remains almost
constant, whereas the maximum values of acceleration become
smaller in exchange for a longer settling time.

IV. Conclusions

In this paper, the relative orbit transfer problems along circular and
eccentric orbits have been considered. As preliminaries, the NCVE

target vehicle

a1

60 50 40 30 20 10 0 -0
ylkm]

Fig. 16 Controlled trajectory of the nonlinear Tschauner-Hempel
equation, SS.

10+
25722 —
2
15
1
=
0 /’\’—
05
A
Yo% 4 & 8 10 12
rls] x10*

Fig. 17 Control inputs, SS.

property of Hill’s equation and the Tschauner—Hempel equation
have been shown. Using this property the relative orbit transfer
problems are formulated as linear quadratic regulator problems and
feedback controls are obtained. In the circular case the optimal cost is
then minimized with respect to the initial condition. Analytical
solutions are obtained when two relative orbits are concentric or
when they intersect. Numerical examples show that the control
strategy based on NCVE gives feedback controls with L! norms less
than the total velocity change of the two-impulse transfer. It is also
found that maximum values of control inputs decrease if the
multistage transfer with intermediate orbits is employed.

In the eccentric case the feedback control is given by the periodic
solution of the Riccati differential equation. Simulation results
concerning an extended elliptic orbit are given and a feedback
control with small L' norm is obtained. The proposed feedback
controller could be applied to the transfer problem between any
initial and final trajectories that are not necessarily periodic.

Appendix: Necessary and Sufficient Conditions for Null
Controllability with Vanishing Energy
I. Null Controllability with Vanishing Energy
In this Appendix the notion of NCVE is introduced and its useful

necessary and sufficient conditions are given.
Consider

X = Ax + Bu, x(0) = x, (Al)
where x € R", u € R", y € R?, and u is a locally square integrable
function. The solution is denoted by x(#;x,,u). The following
definitions are introduced in [23].

60 50 40 30 20 10 0 -10
y [km]

Fig. 18 Controlled trajectory of the nonlinear Tschauner-Hempel
equation, 3S.
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0 0.5 15 2 2.5
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Fig. 19 Control inputs, 3S.



944 SHIBATA AND ICHIKAWA

Definition Al. 1) The system (Al) is said to be null controllable
with vanishing energy, if for any x,, there exists a sequence of pairs
{Ty.uy},0<Ty — ocoas N — oo, uy € L*(0, Ty; R™) such that

Ty
x(Ty; X9, uy) =0 and A}im/ luy()]>dt =0
—0o0 Jo

In this case (A, B) is called NCVE. 2) The system (A1) is said to be
controllable with vanishing energy, if for any pair {x,, x,}, there
exists a sequence of pairs {Ty,uy}, 0 <Ty — 00 as N — oo,
uy € L*(0, Ty; R™) such that

T,
X(Ty; xg, uy) =x; and lim/N|uN(t)|2dt:0
N—oo 0

In this case (A, B) is called CVE.

Statement 1 implies that any initial state can be steered to the origin
with a control of arbitrarily little energy. And the energy here is
understood in the sense of L? norm. The main results of [23] in finite
dimensions yield the following theorems.

Theorem Al. 1) (A, B) isNCVE if and only if it is controllable and
X = 0 is the unique solution to the algebraic Riccati equation

A'X +XA—XBBX=0 (A2)

in the class of nonnegative matrices. 2) (A, B) is NCVE if and only if
itis controllable and ReA < O forany A € o(A) where o(A) is the set
of all eigenvalues of A.

Theorem A1 was originally proved in Hilbert space in [23] and the
part 1 was then extended to Banach space in [25].

Theorem A2. (A, B) is CVE if and only if it is controllable, and
Rel =0 for any A € o(A).

Remark Al. The ARE (A2) can be replaced by

A'X+XA—XBR'BX=0

for any positive definite matrix R > 0. In fact (A, B) is NCVE if and
only if (A, BR™?) is NCVE.

A useful consequence of NCVE on the linear quadratic regulator is
in order. Consider the quadratic cost for (A1)

Jwixg) = / “HCx(O + /() Ru(t)]de

where R is positive definite and | - | denotes the Euclidean norm. The
following results are known [21,22]. Suppose (A, B) is stabilizable
and (C,A) detectable. Then there exists a unique nonnegative
solution X to the ARE

A'X+XA—XBR'BX+CC=0

such that A — BR~'B’X is exponentially stable. The optimal control
minimizing J(u;x,) is given by the feedback control u* =
—R7'B'Xx and J(u*;xy) = xyXx,. If (C,A) is observable, the
solution X in part 1 is positive definite. If (A, B) is NCVE, then
X — 0 and hence J(u*; xq) — 0 as C'C — 0. Thus the initial state
X, can be steered asymptotically to the origin with arbitrarily little
control effort. In applications the L, norm of the feedback control
u* = —R™'B’Xx can be made arbitrarily small by choosing C'C
small.

II. Null Controllability with Vanishing Energy for Periodic Systems
Consider the system

x=A(t)x + B()u, x(ty) = xo
where A(f) and B(t) are T-periodic continuous functions.

[A(?), B(2)] is said to be controllable on [¢,, 7] if for any x, and x;,
there exists a control such that x(t;xg, u) = x;. [A(?), B(?)] is
controllable on [¢,, 7] if and only if

/T S(z,r)B(r)B'(r)S'(t,r)dr >0

fo

where S(z, s) is the transition matrix generated by A(7). If[A(¢), B(?)]
is controllable on [#,, 7], then it is controllable on any interval [¢,, 7,],
7, > 7. NCVE and CVE of [A(¢), B(¢)] on [t,, o0) are defined as in
Definition Al.

Theorems A1 and A2 are extended to periodic systems as follows
[26-28].

Theorem A3. 1) [A(t), B(t)] is NCVE on [t,, o0) if and only if
[A(?), B(?)]is controllable on some interval [¢,, 7], and X () = O1is the
unique solution to the differential Riccati equation

—X=AX+ XA— XBB'X

in the class of T-periodic nonnegative matrices. 2) [A(¢), B(¢)] is
NCVE on [t,, 00) if and only if [A(#), B(¢)] is controllable on some
interval [ty, 7], and | A |< 1 for any A € o[S(T, 0)].

The second condition is obtained by considering the discrete-time
system for x(kT).

Theorem A4. [A(t),B(f)] is CVE on [ty,00) if and only if
[A(?), B(?)] is controllable on some interval [t,, 7], and | A | =1 for
any A € o[S(T, 0)].

Consider the quadratic cost

J(u; x0) = /OO[IC(I)X(t)I2 + w (OR(D)u(r)]dt

where C(¢) and R(r) > O are T periodic. As in the time-invariant case,
the following results are known [29]. Suppose [A(f), B(?)] is
stabilizable and [C(f), A(#)] detectable. Then there exists a unique
nonnegative T-periodic solution X to the Riccati differential
equation

—X=A'X+XA—XBB'X+CC

such that A(f) — B(£)R™'(£)B'(1)X(¢) is asymptotically stable. The
optimal control minimizing J(u; x,) is given by the feedback control
w*=—RY(OB'(1)X()x and J(u*; xo) = xpX (19)x0. If [C(2), A(F)]
is observable on some interval [#,, ], then X(¢) > 0. Again choosing
C’C small and using the feedback control u* = —R~'(f)B' (/)X (¢)x,
the initial state can be steered to the origin with arbitrarily little
control effort. Theorem A3 is used in Sec. III to design feedback laws
for relative orbit transfer problems.
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